76. Observation of the Neophyl Radical Rearrangement by Electron Spin Resonance Spectroscopy

by Edwin J. Hamilton, Jr. and Hanns Fischer

Physikalisch-Chemisches Institut der Universität, CH-8001 Zürich

(12. II, 1973)

Summary. The rearrangement of the 2-methyl-2-phenylpropyl (or neophyl) radical 1 to the 1-methyl-1-benzylethyl radical 2 is observed by ESR. spectroscopy during photolysis of dibutylperoxide in t-butylbenzene at 270-360 K. The energy of activation of the rearrangement is determined to be (43 ± 9) kJ mol⁻¹.

Since the discovery [1] of the rearrangement of the 2-methyl-2-phenyl-propyl (or neophyl) radical 1 to the 1-methyl-1-benzylethyl radical 2, this and similar radical rearrangements via 1,2-aryl migration have reveived considerable mechanistic study¹). These investigations have relied on the analysis of product distributions under conditions of competition between radical rearrangement and radical scavenging. The direct observation of the radicals during such a rearrangement by electron spin resonance (ESR.) spectroscopy has not been previously reported²).

We wish to report the ESR. observation of the neophyl rearrangement $(1 \rightarrow 2)$ and the determination of its activation energy. Both 1 and 2 have been separately observed by others [4, 5] and show classical structures. Further, the rearrangement has been found to be not significantly reversible [6].

Solutions of di-t-butylperoxide (1/6 by volume) in t-butylbenzene were photolyzed in the cavity of an ESR. spectrometer using the quartz flow cell and irradiation system [7] previously described. Fig. 1 shows ESR. spectra obtained at different temperatures. Below 270 K, the observed spectrum is due to 1. On increasing the temperature, the spectrum becomes a superposition of the spectra of 1 and 2, while above 360 K, only 2 is observed. In almost all spectra, lines due to methyl (3) are present, their intensities being greater at higher temperature. These observations show that the rearrangement of 1 to 2 is occuring and that the higher the temperature, the more radicals rearrange during the average radical lifetime (which is determined by second-order termination). Radical 2 was also observed on photolysis of di-t-butylperoxide in isobutylbenzene; at $\simeq 310$ K and lower temperatures, 1 was not present, in agreement with the expected irreversibility of the rearrangement. High-resolution ESR. spectra of 1 and 2 are shown in Fig. 2, and the spectral parameters are given in the Table. They agree with those previously reported [4, 5]. The similarity of the β -CH₂ coupling constant of **2** to that of the *t*-pentyl radical indicates that the former has the same lowest energy rotamer as that known for the latter [8], *i.e.*, the one with the β -carbon to γ -carbon bond eclipsing the half-filled 2p orbital. Thus substitution of a β -phenyl group for a β -methyl does not change the lowest energy rotamer, as is also the case for *n*-propyl [9, 10] and 2-phenylethyl [4b, 8, 10].

¹) See [2] and references therein.

²) Other free-radical rearrangements have been observed by ESR., see [4b] [3].

Fig. 1. Spectra obtained during photolysis of di-t-butylperoxide in t-butylbenzene. Open circles denote lines due to methyl radical 3; solid circles denote lines due to unidentified species; solid arrows denote lines used for determination of S_1 ; dashed arrows denote the same for S_2 . Outer lines of 2 are not shown.

Fig. 2. ESR. spectra of 1 and 2. Open circles denote lines due to methyl radical 3

	a _H (α)	$a_{\mathbf{H}}(\beta, CH_{3})$	$a_{H}(\beta, CH_2)$	$a_{H}(\gamma)$	g	T (K)
$1 = C_6 H_5 C(CH_3)_2 \dot{C} H_2^a)$	2.185 (2)			0.102 (2)	2.00266 (8)	237
$2 = \mathrm{C}_{6}\mathrm{H}_{5}\mathrm{C}\mathrm{H}_{2}\overset{\bullet}{\mathrm{C}}(\mathrm{C}\mathrm{H}_{3})_{2}{}^{\mathrm{b}})$		2.287 (2)	1.880(6)		2.00274 (8)	3 63
$\mathrm{CH_3CH_2C(CH_3)_2^c)}$		2. 28	1.89			253
^a) Line width $\sim 0.04 \text{ mT}$	^b) Line	width ~0.014	mT ^c) From	m [8].		

Table. Coupling Constants [mT] and g-Factors

The observed radicals are consistent with the scheme:

$$(CH_3)_3COOC(CH_3)_3 \xrightarrow{h\nu} 2 (CH_3)_3C\dot{O}$$
 (1)

$$(CH_3)_3C\dot{O} \longrightarrow (CH_3)_2CO + \dot{C}H_3$$
 (2)

$$(CH_3)_3C\dot{O} + C_6H_5C(CH_3)_3 \longrightarrow (CH_3)_3COH + C_6H_5C(CH_3)_2\dot{C}H_2$$
 (3)
1

$$C_{6}H_{5}C(CH_{3})_{2}\dot{C}H_{2} \xrightarrow{k_{r}} C_{6}H_{5}CH_{2}\dot{C}(CH_{3})_{2}$$

$$(4)$$

$$1 \qquad 2$$

$$\mathbf{i} + \mathbf{j} \qquad \xrightarrow{\mathbf{k}\mathbf{i}\mathbf{j}} \quad \text{products } (\mathbf{i}, \mathbf{j} = \mathbf{1}, \mathbf{2}, \mathbf{3})$$
 (5)

Because of the fast rates expected [11] for (2) and (3), second-order termination of *t*-butoxy radicals should be unimportant under our conditions. With the usual assumption for the cross-termination rate constants, $k_{ij} = 2(k_{ii}k_{jj})^{1/2}$ for $i \neq j$ [12], kinetic analysis of (1)–(5) under conditions of steady-state irradiation yields

$$\frac{[2]}{[1]} = \frac{k_r}{2 \, k_{22} (1+J)^{1/2}} \tag{6}$$

797

where I equals the rate of production of 1 by reaction (3), and J equals the rate of production of 3 by reaction (2).

In order to determine the activation energy $\mathbf{E}_{\mathbf{r}}$ of $\mathbf{k}_{\mathbf{r}}$, we now consider the temperature dependences of the various quantities in (6). The sum $\mathbf{I} + \mathbf{J}$ is just twice the rate of disappearance of peroxide in (1). That this rate should be nearly constant in the temperature range 290–340 K, may be shown as follows: Extrapolation of viscosity data for *t*-butylbenzene ($\eta = 2.1$ cp at 263 K [13]) using an assumed *Arrhenius* energy for viscosity of 8 kJ mol⁻¹ [14] gives $\eta \simeq 1.5$ cp at 290 K, and 0.9 cp at 340 K. Then, using these viscosities, interpolation of data for the cage effect (f) in di-*t*-butylperoxide photolysis as a function of viscosity [15], with temperature correction using the relation (f⁻¹-1) $\sim T^1/2$ [16], gives f $\simeq 0.31$ at 290 K, and f $\simeq 0.24$ at 340 K for *t*-butylbenzene of the radical termination reactions (5) is expected to be determined by that of the solvent viscosity, which gives $\simeq 8 \text{ kJ mol}^{-1}$ for the energy of activation of \mathbf{k}_{22} [14]. From these assumptions and (6) we obtain

$$\log_{10}\left(\frac{[2]}{[1]}\right) = -\frac{\mathrm{E_r} - 4}{2.3\,\mathrm{RT}} + \mathrm{const.} \tag{7}$$

Since $\log_{10} ([2]/[1]) = \log_{10} (a [2]/[1]) - \log_{10} a$, where a is an arbitrary constant, eq. (7) shows that an *Arrhenius* plot of any quantity which can be taken from the spectra and which is proportional to the ratio [2]/[1] will give E_r . The line shape of each of the three radicals 1, 2 and 3 was essentially invariant with temperature. Therefore, ratios of signal heights (corrected for a small temperature dependence of the saturation behavior of 2) are proportional to [2]/[1].

Fig. 3 shows a plot of the logarithm of the ratio of signal heights S_2/S_1 , corrected as above, against T⁻¹. The slope $(-2.0 \cdot 10^3 \text{ K})$ combined with (7) gives $E_r = 43 \text{ kJ}$ mol⁻¹. We estimate the accuracy as $\pm 9 \text{ kJ}$ mol⁻¹.

Fig. 3. Plot of signal height ratios as a function of temperature

Further, an approximate double integration and saturation correction of the ESR. signals showed that the concentration of **3** is less than about 10% of the total radical concentration, and that multiplication of S_2/S_1 by about 0.6 gives [2]/[1].

The activation energy agrees well with an estimate derived from literature data as follows: *Rüchardt* [17] has given accurate rate constant ratios for the decarbonylation of β -phenylisovaleraldehyde in 1,2-dichlorobenzene at $\simeq 410$ K. His data yield a value of 15.5 kJ mol⁻¹ for the difference between E_r and E for the reaction (X = C_6H_5):

$$\mathrm{XC}(\mathrm{CH}_3)_2\mathrm{CH}_2 + \mathrm{XC}(\mathrm{CH}_3)_2\mathrm{CH}_2\mathrm{CHO} \rightarrow \mathrm{XC}(\mathrm{CH}_3)_3 + \mathrm{XC}(\mathrm{CH}_3)_2\mathrm{CH}_2\mathrm{CO}.$$

Taking E as equal to that for the same reaction with X = H in the gas phase, which is 27.2 kJ mol⁻¹ [12], one obtains $E_r \simeq 42.7$ kJ mol⁻¹. Also, the observed irreversibility of the rearrangement is in accord with expectation since $1 \rightarrow 2$ is estimated to be exothermic by $\simeq 33$ kJ mol⁻¹ from the dissociation energies $D(neo-C_5H_{11} - H) = 418$ kJ mol⁻¹ and $D(t-C_4H_9 - H) = 385$ kJ mol⁻¹ [18], and the negligible difference in the standard enthalpies of formation for *t*-butylbenzene and isobutylbenzene [19].

From the value of E_r , it is clear that $1 \rightarrow 2$ does not proceed by simple dissociation and recombination, because 1 is estimated to be $\simeq 142 \text{ kJ mol}^{-1}$ less energetic than phenyl + isobutene [18, 19]. More information about the rearrangement mechanism could be obtained from absolute measurement of k_r . From radical lifetimes in other chemical systems measured previously under similar conditions [7], we estimate the order of magnitude of k_r as 10³ s⁻¹ at 290 K. Experiments to measure k_r directly using time-resolved ESR. spectroscopy are in progress.

Support by the Swiss National Foundation for Scientific Research (2.282.70, 2.630.72) is gratefully acknowledged.

REFERENCES

- [1] a) W. H. Urry & M. S. Kharasch, J. Amer. chem. Soc. 66, 1438 (1944); b) S. Winstein & F. H. Seubold, Jr., ibid. 69, 2916 (1947).
- [2] R. Kh. Freidlina, Advan. Free Radical Chem. 1, 211 (1965).
- [3] J. K. Kochi, P. J. Krusic & D. R. Eaton, J. Amer. chem. Soc. 91, 1877 (1969); R. A. Sheldon & J. K. Kochi, ibid. 92, 4395 (1970); A. L. J. Beckwith & P. K. Tindal, Austral. J. Chemistry 24, 2099 (1971).
- [4] a) A. Hudson & H. A. Hussain J. chem. Soc. B, 793 (1969); b) D. J. Edge & J. K. Kochi, J. Amer. chem. Soc. 94, 7695 (1972).
- [5] A. Ohno, N. Kito & Y. Ohnishi, Bull. chem. Soc. Japan 44, 470 (1971).
- [6] W. H. Urry & N. Nicolaides, J. Amer. chem. Soc. 74, 5163 (1952).
- [7] H. Paul & H. Fischer, Chem. Commun. 1971, 1038; iidem, Helv., to be published; E. J. Hamilton, Jr. & H. Fischer, J. phys. Chemistry, in press.
- [8] P. J. Krusic, P. Meakin & J. P. Jesson, J. phys. Chemistry 75, 3438 (1971).
- [9] R. W. Fessenden, J. Chim. physique 61, 1570 (1964).
- [10] J. K. Kochi & P. J. Krusic, J. Amer. chem. Soc. 91, 3940 (1969).
- [11] P. Gray, R. Shaw & J. C. J. Thynne, Progress in Reaction Kinetics 4, 63 (1967).
- [12] J. A. Kerr & A. F. Trotman-Dickenson, Progress in Reaction Kinetics 1, 105 (1961).
- [13] M. R. Carpenter, D. B. Davies & A. J. Matheson, J. chem. Physics 46, 2451 (1967).
- [14] J. A. Riddick & E. E. Toops, Jr., Organic Solvents, 2nd edition, (Vol. VII of Technique of Organic Chemistry, A. Weissberger, editor), Interscience, New York, N.Y., 1955, p. 24.
- [15] H. Kiefer & T. G. Traylor, J. Amer. chem. Soc. 89, 6667 (1967).
- [16] O. Dobis, J. M. Pearson & M. Szwarc, J. Amer. chem. Soc. 90, 278 (1968).
- [17] C. Rüchardt, Chem. Ber. 94, 2599 (1961).
- [18] Handbook of Chemistry and Physics, 53nd edition, R. C. Weast, editor, The Chemical Rubber Co., Cleveland, Ohio, 1972–1973.
- [19] E. J. Prosen, W. H. Johnson & F. D. Rossini, J. Res. NBS 36, 455 (1946).

77. Studies on the Constituents of Capsicum. Part 31)

A Quantitative Determination of Olefinic and Saturated Components by NMR. and of *trans*-Components by IR. Spectroscopy in a Capsaicinoid Mixture from Natural Source

by Anneliese Müller-Stock, R. K. Joshi and J. Büchi

Pharmazeutisch-chemische Abteilung des Pharmazeutischen Institutes der Eidgenössischen Technischen Hochschule, Clausiusstrasse 25, 8006 Zürich (Schweiz)

(12. I. 73)

Introduction. – The crystalline pungent principle of *Capsicum annuum* is the mixture of capsaicin, dihydrocapsaicin and their homologs [1] [2]. We have already described the separation of these components by gas-chromatography [2] and their quantitative estimation in the mixture [3]. In the present work we report appropriate

¹) For part 1 & 2 see [2] & [3].