76. Observation of the Neophyl Radical Rearrangement by Electron Spin Resonance Spectroscopy

by **Edwin J. Hamilton, Jr.** and **Hanns Fischer**

Physikalisch-Chemisches Institut der Universität, CH-8001 Zürich

(12. **11.** 1973)

Summary. The rearrangement of the 2-methyl-2-phenylpropyl (or neophyl) radical 1 to the 1-methyl-1-benzylethyl radical **2** is observed by ESR. spectroscopy during photolysis of **di-t**butylperoxide in t-butylbcnzene at 270-360 K. The energy of activation of the rearrangement is determined to be (43 ± 9) kJ mol⁻¹.

Since the discovery [1] of the rearrangement of the 2-methyl-2-phenyl-propyl (or neophyl) radical **1** to the 1-methyl-1-benzylethyl radical **2,** this and similar radical rearrangements *via* 1,2-aryl migration have reveived considerable mechanistic study¹). These investigations have relied on the analysis of product distributions under conditions of competition between radical rearrangement and radical scavenging. The direct observation of the radicals during such a rearrangement by electron spin resonance $(ESR.)$ spectroscopy has not been previously reported²).

We wish to report the ESR, observation of the neophyl rearrangement $(1 \rightarrow 2)$ and the determination of its activation energy. Both **1** and **2** have been separately observed by others **[4,** 51 and show classical structures. Further, the rearrangement has been found to be not significantly reversible [6].

Solutions of di-t-butylperoxide $\left(\frac{1}{6}\right)$ by volume) in t-butylbenzene were photolyzed in the cavity of an ESR. spectrometer using the quartz flow cell and irradiation system [7] previously described. Fig. 1 shows ESR. spectra obtained at different temperatures. Below 270 **I<,** the observed spectrum is due to **1.** On increasing the temperature, the spectrum becomes a superposition of the spectra of **1** and **2,** while above *360* K, only **2** is observed. In almost all spectra, lines due to methyl **(3)** are present, their intensities being greater at higher temperature. These observations show that the rearrangement of 1 to **2** is occuring and that the higher the temperature, the more radicals rearrange during the average radical lifetime (which is determined by second-order termination). Radical **2** was also observed on photolysis of di-t-butylperoxide in isobutylbenzene; at ≈ 310 K and lower temperatures, 1 was not present, in agreement with the expected irreversibility of the rearrangement. High-resolution ESR. spectra of 1 and **2** are shown in Fig. 2, and the spectral parameters are given in the Table. They agree with those previously reported **[4,** 51. The similarity of the β -CH₂ coupling constant of **2** to that of the t-pentyl radical indicates that the former has the same lowest energy rotamer as that known for the latter [8], *i.e.,* the one with the β -carbon to y-carbon bond eclipsing the half-filled 2p orbital. Thus substitution of a β -phenyl group for a β -methyl does not change the lowest energy rotamer, as is also the case for n -propyl $[9, 10]$ and 2-phenylethyl $[4b, 8, 10]$.

¹⁾ See *[Z]* and references therein.

^{*)} Other free-radical rearrangements have been observed by ESR., see **[4b] [3].**

Fig. 1. Spectra obtained during photolysis of di-t-butylperoxide in t-butylbenzene. Open circles denote lines due to methyl radical 3; solid circles denote lines due to unidentified species; solid arrows denote lines used for determination of S_1 ; dashed arrows denote the same for S_2 . Outer lines of 2 are not shown.

Fig. 2. ESR. spectra of 1 and 2. Open circles denote lines due to methyl radical 3

	$a_H(\alpha)$	$a_{\mathbf{H}}(\beta, \text{CH}_2)$	$a_H(\beta, CH_2)$	$a_H(\nu)$		T(K)
$1 = CeHsC(CHa)2CHaa$	2.185(2)			0.102(2)	2.00266(8)	237
$2 = C_6H_5CH_2C(CH_3)_2^b$		2.287(2)	1.880(6)		2,00274(8)	363
$CH_3CH_3C(CH_3)_2^c$		2.28	1.89			253
a) Line width ~ 0.04 mT b) Line width ~ 0.014 mT c) From [8].						

Table. Coupling Constants [mT] and g-Factors

The observed radicals are consistent with the scheme :

$$
(\text{CH}_3)_3\text{COOC}(\text{CH}_3)_3 \longrightarrow \overset{h\nu}{\longrightarrow} 2 (\text{CH}_3)_3\text{CO}
$$
 (1)

$$
(\text{CH}_3)_3\text{CO} \longrightarrow (\text{CH}_3)_2\text{CO} + \dot{\text{CH}}_3
$$
 (2)

$$
(\text{CH}_3)_3\text{CO} + C_6\text{H}_5\text{C}(\text{CH}_3)_3 \xrightarrow{\qquad} (\text{CH}_3)_3\text{COH} + C_6\text{H}_5\text{C}(\text{CH}_3)_2\text{CH}_2 \tag{3}
$$

$$
C_6H_5C(CH_3)_2\overset{\circ}{\mathbf{C}}H_2 \longrightarrow C_6H_5CH_2\overset{\circ}{\mathbf{C}}(CH_3)_2
$$
\n(4)

$$
i + j \longrightarrow \text{products } (i, j = 1, 2, 3) \tag{5}
$$

Because of the fast rates expected **[ll]** for (2) and *(3),* second-order termination of t-butoxy radicals should be unimportant under our conditions. With the usual assumption for the cross-termination rate constants, $k_{ij} = 2(k_{ij}k_{jj})^{1/2}$ for $i \neq j$ [12], kinetic analysis of **(1)-(5)** under conditions of steady-state irradiation yields

$$
\frac{[2]}{[1]} = \frac{k_{\mathbf{r}}}{2 \,\mathbf{k_{22}} (1 + \mathbf{J})^{1/2}} \tag{6}
$$

where I equals the rate of production of **1** by reaction (3), and J equals the rate of production of **3** by reaction (2).

In order to determine the activation energy E_r of k_r , we now consider the temperature dependences of the various quantities in (6) . The sum I $+$ J is just twice the rate of disappearance of peroxide in **(1).** That this rate should be nearly constant in the temperature range 290-340 K, may be shown as follows : Extrapolation of viscosity data for *t*-butylbenzene $(\eta = 2.1 \text{ cp at } 263 \text{ K } [13])$ using an assumed *Arrhenius* energy for viscosity of 8 kJ mol⁻¹ [14] gives $\eta \simeq 1.5$ cp at 290 K, and 0.9 cp at 340 K. Then, using these viscosities, interpolation of data for the cage effect (f) in di-t-butylperoxide photolysis as a function of viscosity [lS], with temperature correction using the relation (f⁻¹-1) \sim T¹/² [16], gives f \simeq 0.31 at 290 K, and f \simeq 0.24 at 340 K for t-butylbenzene as solvent; thus $I + J$ is in fact nearly constant. The temperature dependence of the radical termination reactions **(5)** is expected to be determined by that of the solvent viscosity, which gives $\simeq 8$ kJ mol⁻¹ for the energy of activation of k_{22} [14]. From these assumptions and (6) we obtain

$$
\log_{10}\left(\frac{[2]}{[1]}\right) = -\frac{E_r - 4}{2.3 \text{ RT}} + \text{const.} \tag{7}
$$

Since \log_{10} ([2]/[1]) = \log_{10} (a [2]/[1]) - \log_{10} a, where a is an arbitrary constant, eq. (7) shows that an *Arrhenius* plot of any quantity which can be taken from the spectra and which is proportional to the ratio $\lceil 2 \rceil / \lceil 1 \rceil$ will give E_r . The line shape of each of the three radicals **1, 2** and **3** was essentially invariant with temperature. Therefore, ratios of signal heights (corrected for a small temperature dependence of the saturation behavior of **2)** are proportional to **[2]/[1].**

Fig. **3** shows a plot of the logarithm of the ratio of signal heights *S,/S,,* corrected as above, against T⁻¹. The slope $(-2.0 \cdot 10^3 \text{ K})$ combined with (7) gives $E_r = 43 \text{ kJ}$ mol⁻¹. We estimate the accuracy as \pm 9 kJ mol⁻¹.

Fig. 3. Plot of signal height vatios as a function of temperature

Further, an approximate double integration and saturation correction of the ESR. signals showed that the concentration of 3 is less than about 10% of the total radical concentration, and that multiplication of S_2/S_1 by about 0.6 gives [2]/[1].

The activation energy agrees well with an estimate derived from literature data as iollows: *Riichardt* [17] has given accurate rate constant ratios for the decarbonylation of β -phenylisovaleraldehyde in 1,2-dichlorobenzene at \simeq 410 K. His data yield a value of 15.5 kJ mol⁻¹ for the difference between E_r and E for the reaction (X = C_6H_5 :

$$
\mathrm{XC}(\mathrm{CH}_3)_2\dot{\mathrm{CH}}_2 + \mathrm{XC}(\mathrm{CH}_3)_2\mathrm{CH}_2\mathrm{CHO} \rightarrow \mathrm{XC}(\mathrm{CH}_3)_3 + \mathrm{XC}(\mathrm{CH}_3)_2\mathrm{CH}_2\dot{\mathrm{CO}}.
$$

Taking E as equal to that for the same reaction with $X = H$ in the gas phase, which is 27.2 kJ mol⁻¹ [12], one obtains $E_r \approx 42.7$ kJ mol⁻¹. Also, the observed irreversibility of the rearrangement is in accord with expectation since $1 \rightarrow 2$ is estimated to be of the rearrangement is in accord with expectation since $1 \rightarrow 2$ is estimated to be exothermic by $\simeq 33 \text{ kJ}$ mol⁻¹ from the dissociation energies $D(neo-C_5H_{11} - H) = 418$ exothermic by $\simeq 33$ kJ mol⁻¹ from the dissociation energies $D(ne_0-C_5H_{11}-H) = 418$
kJ mol⁻¹ and $D(t-C_4H_9 - H) = 385$ kJ mol⁻¹ [18], and the negligible difference in the standard enthalpies of formation for t-butylbenzene and isobutylbenzene [19].

From the value of E_r , it is clear that $1 \rightarrow 2$ does not proceed by simple dissociation and recombination, because **1** is estimated to be \simeq 142 kJ mol⁻¹ less energetic than phenyl $+$ isobutene [18, 19]. More information about the rearrangement mechanism could be obtained from absolute measurement of **k,.** From radical lifetimes in other chemical systems measured previously under similar conditions [7], we estimate the ' order of magnitude of k_r as 10³ s⁻¹ at 290 K. Experiments to measure k_r directly using time-resolved ESR. spectroscopy are in progress.

Support by the *Swiss National Foundation for Scientific Research* (2.282.70, 2.630.72) is gratcfully acknowledged.

REFERENCES

- a) *W. H. Urry* & *M. S. Kharasch,* **J.** Amer. chem. SOC. 66, 1438 (1944) ; b) S. *Winstein* & *F. H. Seubold, Jr., ibid. 69,* 2916 (1947).
- *R. Kh. Freidlina,* Advan. Free Radical Chem. 7, 211 (1965).
- *J. K. Kochi, P. J. Krusic* & *D. R. Eaton,* J. Amcr. chem. *Soc.* 91,1877 (1969) ; *R. A. Sheldon* & *J. K. Kochi, ibid. 92,* 4395 (1970) ; *A. L. J. Beckwith* & *P. K. Tindal,* Austral. J. Chemistry *24,* 2099 (1971).
- a) *A. Hudson* & *H. A. Hussain* J. chern. SOC. B, 793 (1969); **b)** *D. J. Edge* & *J. K. Kochi,* J. Amer. chem. *SOC.* 94, 7695 (1972).
- *,4. Ohno,* N. *Kito* & *Y. Ohnishi,* Bull. chem. SOC. Japan *44,* 470 (1971).
- *W. H. Urry* & *N. Nicolaides,* J. Amer. chem. SOC. *74,* 5163 (1952).
- *H. Paul* & *H. Fischer,* Chem. Commun. 1971, 1038; *iidem,* Hclv., to be publishcd; *E. J. Hamilton, Jr.* & *H. Fischer,* J. phys. Chemistry, in press.
- *P. J. Kvusic, P. Meakin* & *J. P. Jesson,* J. phys. Chemistry *75,* 3438 (1971).
- *H. W. Fessenden,* J. Chim. physique *67,* 1570 (1964).
- *J. K. Kochi* & *P. J. Krusic, J.* Amer. chem. SOC. *91,* 3940 (1969).
- *P. Gray, H. Shaw* & *J. C. J. Thynne,* Progress in Reaction Kinetics *4,* 63 (1967).
- *J. A. Kerr* & *A. F. Trotman-Dickenson,* Progress in Reaction Kinetics I, 105 (1961).
- *M. R. Carpenter, D. B. Davies &A. J. Matheson,* J. chem. Physics 46, 2451 (1967).
- *J. A. Riddick* & *E. E. Toops, Jr.,* Organic Solvents, 2nd edition, (Vol. VII of Technique of Organic Chemistry, A. Weissberger, editor), Interscience, New York, N.Y., 1955, p. 24.
- *H. Kiefer* & *T. G. Traylor,* **J.** Amer. chem. SOC. *89,* 6667 (1967).
- *0. Dobis. J. M. Pearson* & *M. Szwarc,* J. Amcr. chem. SOC. *90,* 278 (1968).
- [17] C. Rüchardt, Chem. Ber. 94, 2599 (1961).
- *Handbook of Chemistry and Physics,* 53nd edition, R. C. Wcast, editor, The Chemical Rubber Co., Cleveland, Ohio, 1972-1973.
- *E. J. Prosen, W. H. Johnson* & *F. D. Rossini,* J. Res. NBS 36, 455 (1946).

77. Studies on the Constituents of Capsicum. Part 3l)

A Quantitative Determination of Olefinic and Saturated Components by NMR. and of trans-Components by IR. Spectroscopy in a Capsaicinoid Mixture from Natural Source

by Anneliese Muller-Stock, R. K. Joshi and **J. Biichi**

Pharmazeutisch-chemische Abteilung des Pharmazcutischen Institutes der Eidgenössischen Technischen Hochschule, Clausiusstrasse 25, 8006 Zürich (Schweiz)

(12. **I.** 73)

Introduction. - The crystalline pungent principle of *Capsicum annuurn* is the mixture of capsaicin, dihydrocapsaicin and their homologs [l] **[2].** We have already described the separation of these components by gas-chromatography [2] and their quantitative estimation in the mixture **[3].** In the present work we report appropriate

¹⁾ For part 1 & **2** see 121 & [3].